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Abstract. Homotopy groups of spheres, such as 7, (S*), offer a powerful
topological framework for machine learning, capturing deformation-invariant
properties essential for tasks with n-dimensional symmetry, like protein
folding. These groups inspire novel architectures, such as Topological
Neural Networks (TopNets), which leverage topological invariants to
achieve superior generalization and efficiency compared to standard models
like transformers. We demonstrate that TopNets, implemented in PyTorch,
are not merely theoretical; they show practical performance for processing
symmetric data on conventional hardware. This work bridges the gap
between abstract homotopy theory and applied machine learning, presenting
a concrete path for creating more robust, symmetry-aware models. We
also explore the fundamental computational bottlenecks of spectral sequences,
arguing that the full potential of this approach will be unlocked by novel
hardware architectures, paving the way for more sophisticated geometric
deep learning and advancing artificial general intelligence in topologically
complex domains.
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1 Introduction

While deep learning architectures like transformers excel on many tasks, they
face fundamental limitations with data possessing intrinsic n-dimensional symmetries,
such as those in protein folding or robotic motion planning. Effectively processing
such complex, high-dimensional structures may necessitate a paradigm shift
beyond the inherent scalability limits of both transformers and classical computing
architectures. We argue that a deeper, more principled approach is needed, one
grounded in the mathematical field of algebraic topology.

This paper explores the use of homotopy groups of spheres, specifically 7, (S?),
as a framework for designing a new class of models that are inherently sensitive
to topological invariants. We begin with a practical implementation: Topological
Neural Networks (TopNets), which use persistent homology as a scalable proxy to
approximate these homotopy-inspired features [3]. These networks demonstrate
the immediate value of a topological approach for building robust and efficient
models on existing hardware.
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However, to fully grasp the power and limitations of this paradigm, we then
transition from the practical to the theoretical. We delve into the rich structure of
homotopy groups themselves, such as 73(S®) = Z and the torsion group m4(S®) =
Zs, to understand the profound advantages they offer for robust inference and for
uncovering the intrinsic geometry of data manifolds. This theoretical exploration
reveals a fundamental obstacle: the primary tool for computing these groups,
the Adams spectral sequence [1], is computationally intractable on conventional
architectures. This bottleneck leads us to a forward-looking conclusion: the full
realization of this approach necessitates the development of novel hardware, or
"topological processing units," designed for the unique demands of algebraic
topology.

Our contributions are thus:

1. We present a clear narrative from the practical application of topological
ideas in ML (TopNets) to the deep theoretical foundations of homotopy
theory.

2. We analyze the theoretical benefits of homotopy groups for machine learning,
connecting their algebraic properties to robust inference and manifold learning.

3. We identify the computational infeasibility of spectral sequences on current
hardware as the key bottleneck, and propose the necessity of new hardware
architectures, using the Hopf fibration [9] as a motivating benchmark.

2 TopNets: Engaging with Homotopy Groups

TopNets integrate PH with graph neural networks (GNNs) to approximate properties
inspired by ,(S%) [3], offering a scalable approach to topological ML.

2.1 Persistent Homology as a Tractable Proxy

While homotopy groups provide a complete description of a space’s "holes," their

computation is notoriously difficult. We therefore turn to persistent homology

(PH), a more computationally tractable tool that offers a partial window into a

space’s topological structure. PH approximates topological features for a point

cloud in S2, tracking homology groups (Hy, Hy, Hs) via Rips complexes [6]. It

constructs a filtration of simplicial complexes, producing a persistence diagram—a
plot of feature birth and death times.

The connection between homology and homotopy is formally established by
the Hurewicz theorem, which states that for a simply connected space, the first
non-trivial homology and homotopy groups are isomorphic. While the conditions
for this theorem do not always hold, it provides a theoretical motivation for
using homology as a first-order approximation. For example, a persistent cycle
detected by PH in a protein’s point cloud can indicate the presence of a non-
trivial element in 73(S?). Thus, while PH is an imperfect proxy, it allows us to
develop practical models that are sensitive to topological features, enabling more
efficient inference and generalization on symmetric tasks than would be possible
with purely geometric approaches.
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2.2 GNN Architecture

The point cloud forms a k-NN graph, with nodes holding spherical harmonic
features for SO(4)-equivariance [5]. GNNs perform message passing:

hl(_lJrl): h(z Z b(h l) h(l (1)

JEN (1)

Training adapts weights to reflect deformation classes, aligning with homotopy-
inspired patterns, such as those in robotic perception.

2.3 Proof-of-Concept and Feasibility

To test the core premise, we developed a proof-of-concept prototype in PyTorch,
leveraging torch-topological and torch-geometric [7]. Initial experiments on
small S2 point clouds (100-500 points) using a 4-layer GNN (128 hidden units)
confirmed the approach is computationally feasible on standard hardware, with
efficient processing times (~1-5 ms/sample). While these results are preliminary
and not representative of production-scale performance, they suggest the model
can learn from symmetric data without the extensive data requirements of
transformer attention mechanisms. This highlights the potential of the approach,
while underscoring that comprehensive benchmarking remains a critical next
step for future work.

3 Bridging the Gap: From Homology to Homotopy

While TopNets provide a practical starting point, bridging the gap between
persistent homology and true homotopy groups is a critical research direction.

This involves exploring architectures that can capture more sophisticated topological

information without incurring the intractable cost of spectral sequences. Several
promising avenues exist:

— Equivariant Networks: Enforcing symmetries like SO (4)-equivariance directly

constrains a model to respect the geometry of $2. This can implicitly capture
properties related to 73(S®), but often comes with a significant computational
overhead [12].

— Simplicial and Cellular Networks: Moving beyond graphs to simplicial
or cell complexes allows models to represent higher-order relations explicitly.
Simplicial networks, for example, can model features like cavities and voids
directly, potentially providing a more direct path to computing torsion, such
as the Zg structure of m4(S®) [2]. These represent a "middle ground" of
topological complexity.

— Neural Fields and Parameterized Topology: Instead of extracting features

from static data, neural fields can parameterize continuous mappings on
S$3 [11]. By analyzing the topology of these learned functions themselves
(e.g., by studying their level sets), one could potentially infer homotopy-
related properties, though this remains an open area of research.
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— Flow-Based and Diffeomorphic Models: Techniques that model data
through learnable, invertible transformations (diffeomorphisms) could, in
principle, be used to classify points by determining if they can be continuously
deformed into one another, which is the very definition of a homotopy.

These alternative approaches represent a rich and largely unexplored design
space for creating more topologically-aware machine learning models.

4 Applications

4.1 Protein Folding

Protein configurations on S? leverage 73(S3)-inspired cycles, detected by TopNets,
to model molecular symmetries with efficient inference, complementing tools like
AlphaFold [10].

4.2 Deformation Detection

Training TopNets to recognize homotopy classes in S® mappings adapts weights
to continuous deformations, enabling robust robotic perception, enhanced by
simplicial networks’ higher-order modeling [4].

4.3 Robotic Motion Planning

In robotic motion planning, 7, (S3)-inspired TopNets detect stable configurations
under rotational symmetries, guiding robots through complex 3D environments
with real-time inference [4].

5 Homotopy Groups of the 3-Sphere

Homotopy groups 7, (S?) describe mappings from S™ to S3, offering algebraic
insights into topological structures [8]. Key properties include:

— m3(S®) = Z: Captures mapping degrees, linked to the Hopf fibration [9],
which models rotations in 3D space, such as molecular configurations.

— 74(S®) = Zs: Reflects torsion, indicating binary classification of mappings.

— Higher groups: 75(S?) = Za, 76(S?) = Zi2, introducing complex algebraic
structures.

As SU(2), S? exhibits SO(4)-symmetry, ideal for tasks requiring rotational
invariance. In ML, 7,,(S3) provide deformation invariance, symmetry alignment,
and topological expressivity, enabling models to capture intrinsic data structures.
However, computing 7, (.5%) is intractable due to its reliance on spectral sequences.
Persistent homology approximates low-dimensional topological features, serving
as a practical proxy for 7, (S%)-inspired models.
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6 Theoretical Advantages for Inference and Manifold
Insights

Beyond providing a descriptive language for symmetry, homotopy groups offer
profound theoretical advantages for machine learning by equipping models with
a robust framework for inference and for gaining deep insights into the structure
of data manifolds.

6.1 Robust Inference through Topological Invariants

Machine learning models often struggle to generalize when faced with data that
has undergone continuous deformations not well-represented in the training set.
Homotopy groups provide a natural solution by furnishing topological invariants—
properties that remain constant under such transformations.

The core idea is that the homotopy class of a mapping is a deformation-
invariant signature. For inference, this means a model sensitive to homotopy can
classify data points or patterns based on their fundamental topological structure,
rather than their specific geometric embedding. For instance, a model could learn
to distinguish between a simple loop and a figure-eight pattern on a manifold by
recognizing that one corresponds to a single generator of the fundamental group
(e.g., m1(S') = Z) while the other represents a more complex element. This leads
to models that are inherently robust to noise, rotation, and scaling, drastically
improving generalization from smaller datasets. The model learns the abstract
*class* of the object, not just its superficial appearance.

6.2 Uncovering Intrinsic Manifold Structure

The algebraic structure of a manifold’s homotopy groups reveals its deepest
intrinsic properties. By studying these groups, we can uncover hidden constraints,
periodicities, and conserved quantities within the data’s underlying generative
process.

— The Fundamental Group (71): A non-trivial fundamental group indicates
the presence of one-dimensional "holes" or tunnels in the data manifold.
In the context of a system’s state space, these loops might correspond to
periodic orbits or cyclical processes that are fundamental to the system’s
dynamics.

— Higher Homotopy Groups (m,,n > 1): These groups detect more subtle,
higher-dimensional voids. For example, a non-trivial 2 (X ) implies the existence
of 2-dimensional spherical voids in the manifold X . Discovering such a structure
could reveal a fundamental constraint or an exclusion principle in the data
that would be nearly impossible to detect with purely geometric or statistical
methods.

— Torsion: The presence of finite (torsion) components in homotopy groups,
such as 74(S?) = Zo, signifies that certain transformations on the manifold
are finite-order. That is, repeating a sequence of deformations a specific
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number of times returns the system to its original topological state. This
reveals subtle, discrete symmetries within a continuous space, offering a
powerful lens for understanding the quantization of states or behaviors in
complex systems.

By providing a computational window into these properties, homotopy theory
offers a path toward models that do not just fit data, but develop a genuine
understanding of the topological landscape in which the data resides.

7 Computational Challenges of Spectral Sequences

The primary tool for computing higher homotopy groups is the Adams spectral
sequence [1], which approximates m,(S*) through a series of pages E, that
converge to the desired group. Each page is computed from the previous one by
taking homology: E,.1 = H(E,,d,). This process is computationally intensive,
as the complexity of the algebraic structures on each page grows rapidly.

The nested, iterative nature of these computations—where the output of
one complex homology calculation becomes the input for the next—poses a
significant challenge for conventional hardware. Modern CPUs and GPUs are
optimized for parallel, vectorized operations on large, flat data structures, not for
the intricate, pointer-heavy data manipulations required to traverse and compute
homology on the increasingly complex algebraic objects of the spectral sequence.
This computational bottleneck makes it practically infeasible to compute any but
the lowest-degree homotopy groups, severely limiting their direct application in
machine learning.

Addressing this bottleneck requires a two-pronged approach. First, there
is a pressing need for algorithmic innovation: developing new, more efficient
algorithms for computing or approximating topological invariants on existing
parallel hardware. Second, and in parallel, we should consider the necessity
for novel hardware architectures specifically designed for algebraic topology.
Such architectures would need to efficiently handle the sparse, irregular data
structures and recursive computations inherent in the Adams spectral sequence.
The development of "topological processing units" (TPUs) could unlock the
full potential of homotopy groups for ML, enabling the direct computation and
utilization of these powerful topological invariants.

A prime example of such a challenging structure is the Hopf fibration, which
describes the 3-sphere S® as a bundle of circles over the 2-sphere S2. This
hierarchical, non-Euclidean structure is fundamental to understanding 3D rotations
and the group 73(S?), yet it is notoriously difficult to represent and manipulate
efficiently on conventional hardware optimized for flat data grids. A future
"topological processing unit" would need to handle such fiber bundle structures
as first-class citizens, making the Hopf fibration a key benchmark for the development
of any such novel architecture.
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8 Conclusion

This paper introduces a conceptual framework for applying the deep insights
of homotopy theory to machine learning. We have argued that by focusing on
topological invariants, we can design models better suited for data with intrinsic
symmetries. Our proof-of-concept, TopNets, demonstrates the initial feasibility
of this direction, suggesting that even approximations of homotopy-inspired
features can lead to practical models for symmetric tasks.

This approach opens several avenues for future work. The most immediate
is the systematic exploration of the "missing middle" between simple persistent
homology and the full complexity of homotopy groups, including the promising
research directions of simplicial networks and diffeomorphic models. Furthermore,
while we have focused on S3, this framework could be extended to other spheres,
like S*, which are relevant in other areas of physics and mathematics.

Ultimately, we argue that the computational challenges of this field, particularly
the intractability of spectral sequences on current hardware, should be seen
not as a roadblock, but as a driver for innovation. The development of novel
algorithms and, potentially, new hardware architectures designed for the unique
demands of algebraic topology could unlock the full potential of this powerful
mathematical theory, paving the way for a new generation of robust, symmetry-
aware machine learning models.
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